1,359 research outputs found

    Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance

    Get PDF
    A miniature flexible photoacoustic endoscopy probe that provides high-resolution 3D images of vascular structures in the forward-viewing configuration is described. A planar Fabry-Perot ultrasound sensor with a -3dB bandwidth of 53 MHz located at the tip of the probe is interrogated via a flexible fiber bundle and a miniature optical relay system to realize an all-optical probe measuring 7.4 mm in outer diameter at the tip. This approach to photoacoustic endoscopy offers advantages over previous piezoelectric based distal-end scanning probes. These include a forward-viewing configuration in widefield photoacoustic tomography mode, finer spatial sampling (87 µm spatial sampling interval), and wider detection bandwidth (53 MHz) than has been achievable with conventional ultrasound detection technology and an all-optical passive imaging head for safe endoscopic use

    Photoacoustic imaging with a multi-view Fabry-Perot scanner

    Get PDF
    Planar Fabry-Pérot (FP) ultrasound sensor arrays have been used to produce in-vivo photoacoustic images of high quality due to their broad detection bandwidth, small element size, and dense spatial sampling. However like all planar arrays, FP sensors suffer from the limited view problem. Here, a multi-angle FP sensor system is described that mitigates the partial view effects of a planar FP sensor while retaining its detection advantages. The possibility of improving data acquisition speed through the use of sub-sampling techniques is also explored. The capabilities of the system are demonstrated with 3D images of pre-clinical targets

    Rapid Spatial Mapping of Focused Ultrasound Fields Using a Planar Fabry-Pérot Sensor

    Get PDF
    Measurement of high acoustic pressures is necessary in order to fully characterise clinical high-intensity focused ultrasound (HIFU) fields, and for accurate validation of computational models of ultrasound propagation. However, many existing measurement devices are unable to withstand the extreme pressures generated in these fields, and those that can often exhibit low sensitivity. Here, a planar Fabry-Pérot interferometer with hard dielectric mirrors and spacer was designed, fabricated, and characterised and its suitability for measurement of nonlinear focused ultrasound fields was investigated. The noise equivalent pressure of the scanning system scaled with the adjustable pressure detection range between 49 kPa for pressures up to 8 MPa and 152 kPa for measurements up to 25 MPa, over a 125 MHz measurement bandwidth. Measurements of the frequency response of the sensor showed that it varied by less than 3 dB in the range 1 - 62 MHz. The effective element size of the sensor was 65 μm and waveforms were acquired at a rate of 200 Hz. The device was used to measure the acoustic pressure in the field of a 1.1 MHz single element spherically focused bowl transducer. Measurements of the acoustic field at low pressures compared well with measurements made using a PVDF needle hydrophone. At high pressures, the measured peak focal pressures agreed well with the focal pressure modelled using the Khokhlov-Zabolotskaya-Kuznetsov equation. Maximum peak positive pressures of 25 MPa, and peak negative pressures of 12 MPa were measured, and planar field scans were acquired in scan times on the order of 1 minute. The properties of the sensor and scanning system are well suited to measurement of nonlinear focused ultrasound fields, in both the focal region and the low pressure peripheral regions. The fast acquisition speed of the system and its low noise equivalent pressure are advantageous, and with further development of the sensor, it has potential in application to HIFU metrology

    The visible and near-infrared optical absorption coefficient spectrum of Parylene C measured by transmitting light through thin films in liquid filled cuvettes

    Get PDF
    Parylene C (PPXC) is a polymer deposited from the gas phase to form optically clear thin films used in devices including waveguides and sensors. The performance of these devices depends on the visible and near infrared absorption coefficient of PPXC. However, the absorption coefficient is difficult to measure. This is because PPXC films are typically too thin to exhibit detectable absorption in conventional transmittance measurements. To address this challenge, a method involving measuring the transmittance of multiple films immersed together in a liquid filled cuvette was devised. This increased the sensitivity to absorption by increasing the path length in PPXC, while also minimizing reflections and surface losses. Using 200-500 µm thick films, this method was applied to measure the absorption coefficient of PPXC at wavelengths in the range 330-3300 nm. The coefficient was found to vary spectrally by more than two orders of magnitude from 0.025 mm-1 at 1562 nm to 7.7 mm-1 at 3262 nm. These absorption measurements could aid the design of PPXC based sensors and waveguides. The method could be useful for measuring the absorption coefficient of other thin, low-loss materials, particularly those for which it is challenging to obtain thick samples such as other polymers deposited from the gas phase in a similar manner to PPXC

    Use of a flexible optical fibre bundle to interrogate a Fabry–Perot sensor for photoacoustic imaging

    Get PDF
    Photoacoustic imaging systems based on a Fabry Perot (FP) ultrasound sensor that is read-out by scanning a free-space laser beam over its surface can provide high resolution photoacoustic images. However, this type of free-space scanning usually requires a bulky 2-axis galvanometer based scanner that is not conducive to the realization of a lightweight compact imaging head. It is also unsuitable for endoscopic applications that may require complex and flexible access. To address these limitations, the use of a flexible, coherent fibre bundle to interrogate the FP sensor has been investigated. A laboratory set-up comprising an x-y scanner, a commercially available, 1.35 mm diameter, 18,000 core flexible fibre bundle with a custom-designed telecentric optical relay at its distal end was used. Measurements of the optical and acoustic performance of the FP sensor were made and compared to that obtained using a conventional free-space FP based scanner. Spatial variations in acoustic sensitivity were greater and the SNR lower with the fibre bundle implementation but high quality photoacoustic images could still be obtained. 3D images of phantoms and ex vivo tissues with a spatial resolution and fidelity consistent with a free-space scanner were acquired. By demonstrating the feasibility of interrogating the FP sensor with a flexible fibre bundle, this study advances the realization of compact hand-held clinical scanners and flexible endoscopic devices based on the FP sensing concept

    Orthogonal Fabry-Perot sensors for photoacoustic tomography

    Get PDF
    Photoacoustic images of exquisite quality have previously been obtained using planar Fabry-Pérot ultrasound sensors, as they can synthesize detection arrays with small, highly sensitive, elements. However, their planarity prevents reconstruction of structures perpendicular to the sensor plane, which gives rise to limited-view artifacts. Here, a novel FP sensor array configuration is described that incorporates two orthogonal planar arrays in order to overcome this limitation. Three dimensional photoacoustic images of suitably structured phantoms, obtained using a time reversal reconstruction algorithm, are used to demonstrate the significant improvement in the reconstructed images

    ABCD transfer matrix model of Gaussian beam propagation in plano-concave optical microresonators

    Get PDF
    Plano-concave optical microresonators (PCMRs) are optical microcavities formed of one planar and one concave mirror separated by a spacer. PCMRs illuminated by Gaussian laser beams are used as sensors and filters in fields including quantum electrodynamics, temperature sensing, and photoacoustic imaging. To predict characteristics such as the sensitivity of PCMRs, a model of Gaussian beam propagation through PCMRs based on the ABCD matrix method was developed. To validate the model, interferometer transfer functions (ITFs) calculated for a range of PCMRs and beams were compared to experimental measurements. A good agreement was observed, suggesting the model is valid. It could therefore constitute a useful tool for designing and evaluating PCMR systems in various fields. The computer code implementing the model has been made available online

    Interrogating Fabry-Perot ultrasound sensors with Bessel beams for photoacoustic imaging

    Get PDF
    Photoacoustic Tomography (PAT) systems based on Fabry-Perot (FP) sensors provide high-resolution images limited by the system’s sensitivity. The sensitivity is limited by the optical Q-factor of the FP cavity (i.e., the optical confinement of the interrogation laser beam in the FP cavity). In existing systems, a focussed Gaussian beam is used to interrogate the sensor. While providing a small acoustic element required for high-resolution imaging, this interrogation beam naturally diverges inside the FP cavity, leading to the current sensitivity limit. To break this limit, a new approach of interrogating the FP sensor using a Bessel beam is investigated. The Noise Equivalent Pressure (NEP) and both axial and lateral PAT resolutions using Bessel beam interrogation were quantified. Bessel beam interrogation provided lower NEP, similar axial resolution, but lower lateral resolution. Thus, Bessel beam might be an alternative interrogation scheme for deep PAT imaging as high sensitivity is needed and the lateral resolution is limited by the aperture of the PAT system

    Probing the optical readout characteristics of Fabry-Perot ultrasound sensors through realistic modelling

    Get PDF
    The Fabry-Perot interferometer (FPI) is widely used in photoacoustic imaging (PAI) as an ultrasound (US) sensor due to its high sensitivity to weak US waves. Such high sensitivity is important as it allows for increasing the depth in tissue at which PAI can access, thus strongly influencing its clinical applicability. FPI sensitivity is impacted by many factors including the FPI mirror reflectivity, focussed beam spot size, FPI cavity thickness and aberrations introduced by the optical readout system. Improving FPI sensitivity requires a mathematical model of its optical response which takes all of these factors into account. Previous attempts to construct such a model have been critically limited by unrealistic assumptions. In this work we have developed a general model of FPI optical readout which based upon electromagnetic theory. By making very few assumptions, the model is able to replicate experimental results and allows insight to be gained into the operating principles of the sensor

    Photoacoustic imaging with planoconcave optical microresonator sensors: feasibility studies based on phantom imaging

    Get PDF
    The planar Fabry-Pérot (FP) sensor provides high quality photoacoustic (PA) images but beam walk-off limits sensitivity and thus penetration depth to ≈1 cm. Planoconcave microresonator sensors eliminate beam walk-off enabling sensitivity to be increased by an order-of-magnitude whilst retaining the highly favourable frequency response and directional characteristics of the FP sensor. The first tomographic PA images obtained in a tissue-realistic phantom using the new sensors are described. These show that the microresonator sensors provide near identical image quality as the planar FP sensor but with significantly greater penetration depth (e.g. 2-3cm) due to their higher sensitivity. This offers the prospect of whole body small animal imaging and clinical imaging to depths previously unattainable using the FP planar sensor
    • …
    corecore